Section 8.3

Mass and Temperature

Mass

- Although weight and mass are not the same, on Earth they are proportional to each other.
- Mass is a measure of the amount of matter in an object.
- Weight is the measure of gravitational pull on an object.

Metric System

- The kilogram is the basic unit of mass in the metric system.
- Example: A man has the mass of about 75 kg .
- The gram is relatively small and used in place of the ounce.
- Example: A nickel has the mass of about 5 g .
- The milligram is used in the medical and scientific fields.
- The metric tonne (t) is used to express mass of heavy items. One metric tonne $=1000 \mathrm{~kg}$.

Example: Choosing an Appropriate Unit

Determine which metric unit you would use to express the mass of the following.
a) A spider
c) A bicycle
b) A nickel
d) A box of cereal

Solution:
a) Milligrams
c) Kilograms
b) Grams
d) Grams

Volume and Mass of Water

Volume in Cubic Units	Volume in Liters	Mass of Water
$1 \mathrm{~cm}^{3}$	$=1 \mathrm{~mL}$	$=1 \mathrm{~g}$
$1 \mathrm{dm}^{3}$	$=$	1 L
$1 \mathrm{~m}^{3}$	$=$	$=1 \mathrm{~kL}$

Example: Capacity

A fish tank is 1 m long, 60 cm high and 260 mm wide.
Determine the number of liters that the tank holds.

What is the mass of the water in kilograms?

Example: Capacity (continued)

Solution: $V=I w h$

$$
\begin{aligned}
& =1 \mathrm{~m} \times 0.26 \mathrm{~m} \times 0.6 \mathrm{~m} \\
& =0.156 \mathrm{~m}^{3}
\end{aligned}
$$

Since $1 \mathrm{~m}^{3}$ of water $=1 \mathrm{~kL}$ of water, $0.156 \mathrm{~m}^{3}=0.156 \mathrm{~kL}$, or 156 liters of water

- Since $1 \mathrm{~L}=1 \mathrm{~kg}, 156 \mathrm{~L}=156 \mathrm{~kg}$ of water.

Temperature

The term degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is used to measure temperature.

Temperature		
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	Description
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	Water freezes
$22^{\circ} \mathrm{C}$	$71.6^{\circ} \mathrm{F}$	Comfortable room temperature
$37{ }^{\circ} \mathrm{C}$	$98.6^{\circ} \mathrm{F}$	Body temperature
$100^{\circ} \mathrm{C}$	$212^{\circ} \mathrm{F}$	Water boils

Example: Choose ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$

- The temperature of a can of frozen juice is about 2 \qquad .
- The temperature of a person with a fever is about 101.5 \qquad .
- The temperature of a bowl of hot soup is about 175 \qquad .

Solution:
a) ${ }^{\circ} \mathrm{C}$
b) ${ }^{\circ} \mathrm{F}$
c) ${ }^{\circ} \mathrm{F}$

Conversions

- To covert from Celsius to Fahrenheit use the following formula.

$$
F=\frac{9}{5} C+32
$$

- To covert from

Fahrenheit to Celsius use the following formula.
$C=\frac{5}{9}(F-32)$

Example: Conversions

The air temperature on a warm summer day is about 85° F. What is the equivalent temperature on the Celsius thermometer?

- Solution: $C=\frac{5}{9}(F-32)$

$$
\begin{aligned}
& C=\frac{5}{9}(85-32) \\
& C=\frac{5}{9}(53) \\
& C \approx 29.4
\end{aligned}
$$

- The equivalent temperature is about $29.4^{\circ} \mathrm{C}$.

Example: Conversions

The temperature of a cold glass of milk is about $5^{\circ} \mathrm{C}$. What is the equivalent temperature on the Fahrenheit thermometer?

- Solution:

$$
\begin{aligned}
& \mathrm{F}=\frac{9}{5} \mathrm{C}+32 \\
& \mathrm{~F}=\frac{9}{5}(5)+32 \\
& \mathrm{~F}=9+32 \\
& \mathrm{~F}=41
\end{aligned}
$$

The equivalent temperature is about $41^{\circ} \mathrm{F}$.

